
erospaceTechnoloav F n t r r i A

individual jobs in a parameter study experi-
ment. The NASA X-38 Crew Return Vehicle
(upper right) was the subject of a two-
dimensional parameter study in Mach number

number and 12 values of angle of attack.
Pictured (bottom right) is the surface of
coefficients of lift-over-drag for the X-38 at
these 192 parameter combinations.

Point of Contact: Maurice Yarrow
(650) 604-5708
yarrow@ as. n asa.gov

and angle of attack. ILab generated and
submitted 192 separate flow-field computa-
tions for the requested 16 values of Mach

Multithreading for Dynamic Unstructured Grid Applications
Rupak Biswas

The success of parallel computing in solving
realistic computational applications relies on
their efficient mapping and execution on large-
scale multiprocessor architectures. When the
algorithms and data structures corresponding to
these problems are unstructured or dynamic in
nature, efficient implementation on parallel
machines offers considerable challenges.
Unstructured applications are characterized by
irregular data-access patterns whereas dynamic
mesh adaptation causes computational work-
loads to grow or shrink at run time. For such
applications, dynamic load balancing is
required in order to achieve algorithmic scaling
on parallel machines. Our objectives were to
implement various parallel versions of a
dynamic unstructured algorithm and to criti-
cally compare their performances in terms of
run time, scalability, programmability, porta-
bility, and memory overhead.

A multithreaded version of a dynamic unstruc-
tured mesh-adaptation algorithm has been
implemented on the Cray (formerly Tera)
Multithreaded Architecture (MTA). Multi-
threaded machines can tolerate memory latency
and utilize substantially more of their comput-
ing power by processing several threads of
computation. For example, the MTA proces-
sors each have hardware support for up to 128
threads, and are therefore especially well suited

traditional parallel machines, the MTA has a
large uniform shared memory, no data cache,
and is insensitive to data placement. Parallel
programmability is significantly simplified
since users have a global view of the memory,
and need not be concerned with partitioning
and load-balancing issues. Performance was
compared with an MPI implementation on the
T3E and the Origin2000, and a shared-memory
directives-based implementation on the
Origin2000.

A standard computational mesh simulating
flow over an airfoil was used for our experi-
ments to compare the three parallel architec-
tures. The initial mesh, consisting of more
than 28,000 triangles, was refined a total of
five times to generate a mesh 45 times larger,
as shown in figure 1. Performance by platform
and programming paradigm is presented in
figure 2. It is important to note that different
parallel versions use different dynamic load-
balancing strategies. The multithreaded
implementation of the adaptation algorithm
required adding a trivial amount of code to the
original serial version and had little memory
overhead. In contrast, the MPI version doubled
the size of the code and required significant
additional memory for the communication
buffers. The simulation on the eight-processor
MTA at San Diego Supercomputing Center

for irregular and dynamic applications. Unlike using 100 threads per processor was almost ten

eraspace Techno1

times faster than that obtained on 160 proces-
\or5 of a T3E. and more than 100 times faster
than that on a 64-processor Origin2000
running a directives-based version. Results
indicate that multithreaded systems offer
tremendous potential for quickly and

efficiently solving some of the most challeng-
ing real-life problems on parallel computers.

Pomt of Contact: Rupak Biswas
(650) 604-444 I
hiswas@nas.nasa.gov

Fig. I . A close-up view of the computational mesh that was geometrically refined in specific regions to better capture fine-scale
phenomena.

0 A D V A N C E S P A C E T R A N S P O R T A T I O N

erosnaceTechnolocrv F n t r p r i A

Fig. 2. Performance of the dynamic unsfructured mesh-adaptation algorithm by platform and programming paradigm. All
times are in seconds; the fasfesf times are highlighted.

Overset Grid-Generation Software Package
William Chan, Stuart Rogers

In computer simulations of flows about an
object, a computational grid is used to model
the object’s geometry. The Chimera overset-
grid method is currently one of the most
computationally cost-effective options for
obtaining accurate simulations of flow involv-
ing complex geometry configurations, viscous
fluid dynamics, and bodies in relative, dynamic
motion. Considerable success has been
achieved in applying this method to a wide
variety of problems. The objective of the
current work has been to develop a comprehen-
sive set of software tools for performing pre-
and post-processing of overset grids for
complex-geometry simulation problems, for
both static and dynamic cases. These tools
have been packaged together in the Chimera
Grid Tools software.

The Chimera Grid Tools package allows a user
to create overset computational grids, and to

perform geometry processing, grid diagnostics,
solution analysis, and flow-solver input
preparation. This package has been requested
by and distributed to over 200 U.S. organiza-
tions under nondisclosure agreements, and has
been utilized in aerospace, marine, automotive,
environmental, and sports applications. The
software consists of a hierarchy of modules
together with documentation and examples.
At the lowest level are libraries containing
commonly used functions such as input/output
routines for data files, stretching functions,
projection routines, and many others. At one
level above the libraries are about 30 indepen-
dent programs that can be used in batch mode.
Capabilities offered by these programs include
editing, redistribution, smoothing and projec-
tion of grids, hyperbolic and algebraic surface
and volume grid generation, and Cartesian grid
generation. At the highest level is a graphical
user interface called OVERGRID.

